Abstract
<abstract><p>This work is concerned with a stochastic predator-prey system with S-type distributed time delays, regime switching and Lévy jumps. By use of the stochastic differential comparison theory and some inequality techniques, we study the extinction and persistence in the mean for each species, asymptotic stability in distribution and the optimal harvesting effort of the model. Then we present some simulation examples to illustrate the theoretical results and explore the effects of regime switching, distributed time delays and Lévy jumps on the dynamical behaviors, respectively.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference35 articles.
1. X. Mao, Stochastic differential equations and applications, England: Horwood Publishing Limited, 2007.
2. N. Ikeda, S. Watanable, Stochastic differential equations and diffusion processes, New York: North-Holland, 1989.
3. X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in populations dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. doi: 10.1016/S0304-4149(01)00126-0.
4. M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969–2012. doi: 10.1007/s11538-010-9569-5.
5. M. Liu, H. Qiu, K. Wang, A remark on a stochastic predator-prey system with time delays, Appl. Math. Lett., 26 (2013), 318–323. doi: 10.1016/j.aml.2012.08.015.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献