Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity

Author:

Elaiw Ahmed M.1,Alsulami Amani S.12,Hobiny Aatef D.1

Affiliation:

1. Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

2. Department of Mathematics and Statistics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia

Abstract

<abstract><p>The coronavirus disease 2019 (COVID-19) is caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infects the epithelial (target) cells by binding its spike protein, S, to the angiotensin-converting enzyme 2 (ACE2) receptor on the surface of epithelial cells. During the process of SARS-CoV-2 infection, ACE2 plays an important mediating role. In this work, we develop two models which describe the within-host dynamics of SARS-CoV-2 under the effect of humoral immunity, and considering the role of the ACE2 receptor. We consider two discrete (or distributed) delays: (ⅰ) Delay in the SARS-CoV-2 infection of epithelial cells, and (ⅱ) delay in the maturation of recently released SARS-CoV-2 virions. Five populations are considered in the models: Uninfected epithelial cells, infected cells, SARS-CoV-2 particles, ACE2 receptors and antibodies. We first address the fundamental characteristics of the delayed systems, then find all possible equilibria. On the basis of two threshold parameters, namely the basic reproduction number, $ \Re_{0} $, and humoral immunity activation number, $ \Re_{1} $, we prove the existence and stability of the equilibria. We establish the global asymptotic stability for all equilibria by constructing suitable Lyapunov functions and using LaSalle's invariance principle. To illustrate the theoretical results, we perform numerical simulations. We perform sensitivity analysis and identify the most sensitive parameters. The respective influences of humoral immunity, time delays and ACE2 receptors on the SARS-CoV-2 dynamics are discussed. It is shown that strong stimulation of humoral immunity may prevent the progression of COVID-19. It is also found that increasing time delays can effectively decrease $ \Re_{0} $ and then inhibit the SARS-CoV-2 replication. Moreover, it is shown that $ \Re_{0} $ is affected by the proliferation and degradation rates of ACE2 receptors, and this may provide worthy input for the development of possible receptor-targeted vaccines and drugs. Our findings may thus be helpful for developing new drugs, as well as for comprehending the dynamics of SARS-CoV-2 infection inside the host.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3