Caputo-Hadamard fractional boundary-value problems in $ {\mathfrak{L}}^\mathfrak{p} $-spaces

Author:

Murad Shayma Adil1,Rafeeq Ava Shafeeq2,Abdeljawad Thabet3456

Affiliation:

1. Department of Mathematics, College of Science, Univesity of Duhok, Duhok 42001, Iraq

2. Department of Mathematics, College of Science, Univesity of Zakho, Duhok 42001, Iraq

3. Department of Mathematics and Sciences, Prince Sultan Univesity, Riyadh 11586, Saudi Arabia

4. Department of Medical Research, China Medical Univesity, Taichung 40402, Taiwan

5. Department of Mathematics Kyung Hee Univesity, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea

6. Department of Mathematics and Applied Mathematics, School of Science and Technology, Sefako Makgatho Health Sciences Uni., Ga-Rankuwa, South Africa

Abstract

<abstract><p>The focal point of this investigation is the exploration of solutions for Caputo-Hadamard fractional differential equations with boundary conditions, and it follows the initial formulation of a model that is intended to address practical problems. The research emphasizes resolving the challenges associated with determining precise solutions across diverse scenarios. The application of the Burton-Kirk fixed-point theorem and the Kolmogorov compactness criterion in $ {\mathfrak{L}}^\mathfrak{p} $-spaces ensures the existence of the solution to our problem. Banach's theory is crucial for the establishment of solution uniqueness, and it is complemented by utilizing the Hölder inequality in integral analysis. Stability analyses from the Ulam-Hyers perspective provide key insights into the system's reliability. We have included practical examples, tables, and figures, thereby furnishing a comprehensive and multifaceted examination of the outcomes.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference44 articles.

1. K. Diethelm, A. D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, Scientific computing in chemical engineering Ⅱ: computational fluid dynamics, reaction engineering, and molecular properties, Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,217–224. https://doi.org/10.1007/978-3-642-60185-9_24

2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006). https://doi.org/10.1016/S0304-0208(06)80001-0

3. W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040

4. A. Cernea, On a fractional differential inclusion involving a generalized Caputo type derivative with certain fractional integral boundary conditions, J. Fract. Calc. Nonlinear Syst., 3 (2022), 1–11. https://doi.org/10.48185/jfcns.v3i1.345

5. S. A. Murad, H. J. Zekri, S. Hadid, Existence and uniqueness theorem of fractional mixed Volterra-Fredholm integrodifferential equation with integral boundary conditions, Int. J. Differ. Equat., 2011 (2011). https://doi.org/10.1155/2011/304570

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3