Error estimations of a weak Galerkin finite element method for a linear system of $ \ell\geq 2 $ coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms

Author:

Toprakseven Şuayip1,Dinibutun Seza2

Affiliation:

1. Artvin Vocational School, Accounting and Taxation, Artvin Çoruh University, Artvin, 08100, Turkey

2. International University of Kuwait, Ardiya, Kuwait Department of Mathematics and Natural Sciences, Kuwait

Abstract

<abstract><p>This paper introduces a weak Galerkin finite element method for a system of $ \ell\geq 2 $ coupled singularly perturbed reaction-diffusion problems. The proposed method is independent of parameter and uses piecewise discontinuous polynomials on interior of each element and constant on the boundary of each element. By the Schur complement technique, the interior unknowns can be locally efficiently eliminated from the resulting linear system, and the degrees of freedom of the proposed method are comparable with the classical FEM. It has been reported that the energy norm is not adequate for singularly perturbed reaction-diffusion problems since it can not efficiently reflect the behaviour of the boundary layer parts when the diffusion coefficient is very small. For the first time, the error estimates in the balanced norm has been presented for a system of coupled singularly perturbed problems when each equation has different parameter. Optimal and uniform error estimates have been established in the energy and balanced norm on an uniform Shishkin mesh. Finally, we carry out various numerical experiments to verify the theoretical findings.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference45 articles.

1. H. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Berlin, Heidelberg: Springer, 2008. https://doi.org/10.1007/978-3-540-34467-4

2. T. Linss, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Berlin, Heidelberg: Springer, 2008, https://doi.org/10.1007/978-3-642-05134-0

3. N. S. Bakhvalov, The optimization of methods of solving boundary value problems with a boundary layer, USSR Comput. Math. Math. Phys., 9 (1969), 139–166. https://doi.org/10.1016/0041-5553(69)90038-X

4. J. Miller, E. O'Riordan, G. Shishkin, Fitted Numerical Methods For Singular Perturbation Problems, Singapore: World Scientific, 1996. https://doi.org/10.1142/8410

5. G. Shishkin, Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations, Comput. Math. Math. Phys., 35 (1995), 429–446.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3