Stability and bifurcation analysis of a multi-delay model for mosaic disease transmission

Author:

Al Basir Fahad1,Blyuss Konstantin B.2,Venturino Ezio3

Affiliation:

1. Department of Mathematics, Asansol Girls' College, Asansol-713304, India

2. Department of Mathematics, University of Sussex, Falmer, Brighton, BN1 9QH, UK

3. Dipartimento di Matematica "Giuseppe Peano", Università di Torino, via Carlo Alberto 10, 10123 Turin, Italy

Abstract

<abstract><p>A mathematical model is developed for analysis of the spread of mosaic disease in plants, which account for incubation period and latency that are represented by time delays. Feasibility and stability of different equilibria are studied analytically and numerically. Conditions that determine the type of behavior exhibited by the system are found in terms of various parameters. We have derived the basic reproduction number and identify the conditions resulting in eradication of the disease, as well as those that lead to the emergence of stable oscillations in the population of infected plants, as a result of Hopf bifurcation of the endemic equilibrium. Numerical simulations are performed to verify the analytical results and also to illustrate different dynamical regimes that can be observed in the system. In this research, the stabilizing role of both the time delay has been established i.e. when delay time is large, disease will persist if the infection rate is higher. The results obtained here are useful for plant disease management.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference45 articles.

1. D. S. A. Narayana, K. S. Shankarappa, M. R. Govindappa, H. A. Prameela, M. R. G. Rao, K. T. Rangaswamy, Natural occurrence of Jatropha mosaic virus disease in India, Curr. Sci., 91 (2006), 584–586.

2. O. J. Alabi, P. L. Kumar, R. A. Naidu, Cassava mosaic disease: A curse to food security in sub-Saharan Africa, APSnet Features, 2011, 1–17.

3. J. E. Duffus, Whitefly transmission of plant viruses, In: Current topics in vector research, New York: Springer, 1987, 73–91. https://doi.org/10.1007/978-1-4612-4712-8_3

4. S. Q. Gao, J. Qu, N. H. Chua, J. Ye, A new strain of Indian cassava mosaic virus causes a mosaic disease in the biodiesel crop Jatropha curcas, Arch. Virol., 155 (2010), 607–612. https://doi.org/10.1007/s00705-010-0625-0

5. J. P. Tewari, H. D. Dwivedi, P. Madhvi, S. K. Srivastava, Incidence of a mosaic disease in Jatropha curcas L. from eastern Uttar Pradesh, Curr. Sci., 93 (2007), 1048–1049.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3