Linear Bayesian equilibrium in insider trading with a random time under partial observations

Author:

Xiao Kai, ,Zhou Yonghui,

Abstract

<abstract><p>In this paper, the insider trading model of Xiao and Zhou (<italic>Acta Mathematicae Applicatae, 2021</italic>) is further studied, in which market makers receive partial information about a static risky asset and an insider stops trading at a random time. With the help of dynamic programming principle, we obtain a unique linear Bayesian equilibrium consisting of insider's trading intensity and market liquidity parameter, instead of none Bayesian equilibrium as before. It shows that (i) as time goes by, both trading intensity and market depth increase exponentially, while residual information decreases exponentially; (ii) with average trading time increasing, trading intensity decrease, but both residual information and insider's expected profit increase, while market depth is a unimodal function with a unique minimum with respect to average trading time; (iii) the less information observed by market makers, the weaker trading intensity and market depth are, but the more both expect profit and residual information are, which is in accord with our economic intuition.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time AWS Resource Surveillance with Reporting and Dashboard Solution;International Journal of Research in Science, Commerce, Arts, Management and Technology;2024-03-22

2. Risk-seeking insider trading with partial observation in continuous time;AIMS Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3