Abstract
<abstract><p>We give the relationship between indecomposable modules over the finite dimensional $ k $-algebra $ A $ and the smash product $ A\sharp G $ respectively, where $ G $ is a finite abelian group satisfying $ G\subseteq Aut(A) $, and $ k $ is an algebraically closed field with the characteristic not dividing the order of $ G $. More precisely, we construct all indecomposable $ A\sharp G $-modules from indecomposable $ A $-modules and prove that an $ A\sharp G $-module is indecomposable if and only if it is an indecomposable $ G $-stable module over $ A $. Besides, we give the relationship between simple, projective and injective modules in $ modA $ and those in $ modA\sharp G $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference13 articles.
1. I. Assem, D. Simson, A. Skowronski, Elements of the representation theory of associative algebras, Cambridge: Cambridge University Press, 2006. http://dx.doi.org/10.1017/CBO9780511614309
2. M. Auslander, I. Reiten, S. Smalo, Representation theory of Artin algebras, Cambridge: Cambridge University Press, 1995. http://dx.doi.org/10.1017/CBO9780511623608
3. O. Funes, M. Redondo, Skew group algebras of simply connected algebras, Ann. Sci. Math. Quebec, 26 (2002), 171–180.
4. P. Gabriel, The universal cover of a representation-finite algebra, In: Representations of algebras, Berlin: Springer-Verlag, 1981, 68–105. http://dx.doi.org/10.1007/BFb0092986
5. A. Hubery, Representation of quivers respecting a quiver automorphism and a theorem of Kac, Ph. D Thesis, University of Leeds, 2002.