Abstract
<abstract><p>In this study, based on a general ellipsoidal artificial boundary, we present a Dirichlet-Neumann (D-N) alternating algorithm for exterior three dimensional (3-D) Poisson problem. By using the series concerning the ellipsoidal harmonic functions, the exact artificial boundary condition is derived. The convergence analysis and the error estimation are carried out for the proposed algorithm. Finally, some numerical examples are given to show the effectiveness of this method.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference27 articles.
1. K. Bathe, E. L. Wilson, Numerical methods in finite element analysis, Englewood Cliffs: Prentice-Hall, 1976. doi: 10.1016/0898-1221(77)90079-7.
2. D. J. Evans, Numerical solution of exterior problems by the peripheral block over-relaxation method, IMA J. Appl. Math., 19 (1977), 399–405. doi: 10.1093/imamat/19.4.399.
3. C. A. Brebbia, Boundary element method in engineering, Berlin: Spring-Verlag, 1982.
4. D. Givoli, Numerical methods for problems in infinite domains, Amsterdam: Elsevier, 1992.
5. J. L. Zhu, Boundary element analysis for elliptic boundary value problems, Beijing: Science Press, 1992.