Author:
Gandal Ganesh, ,Jothi R Mary Jeya,Phadatare Narayan,
Abstract
<abstract><p>Let $ G_1 \square G_2 $ be the Cartesian product of simple, connected and finite graphs $ G_1 $ and $ G_2 $. We give necessary and sufficient conditions for the Cartesian product of graphs to be very strongly perfect. Further, we introduce and characterize the co-strongly perfect graph. The very strongly perfect graph is implemented in the real-time application of a wireless sensor network to optimize the set of master nodes to communicate and control nodes placed in the field.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference18 articles.
1. A. Tucker, Coloring perfect $(K_{4}-e)$-free graphs, J. Combin. Theory, Ser. B, 42 (1987), 313–318. doi: 10.1016/0095-8956(87)90048-7.
2. C. T. Hoàng, On a conjecture of Meyniel, J. Combin. Theory, Ser. B, 42 (1987), 302–312. doi: 10.1016/0095-8956(87)90047-5.
3. C. Berge, P. Duchet, In: Strongly perfect graphs, North-Holland mathematics studies, North-Holland, 21 (1984), 57–61.
4. C. Berge, Farbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin Luther Univ., Halle-Wittenberg Math.-Natur. Rethe, 1961,114–115.
5. D. B. West, Introduction to graph theory, 2 Eds., Prentice-Hall of India, New Delhi, 2002.