A new strict decay rate for systems of longitudinal $ m $-nonlinear viscoelastic wave equations

Author:

Bouhali Keltoum12,Zubair Sulima Ahmed13,Khalifa Wiem Abedelmonem Salah Ben4,Osman Najla ELzein AbuKaswi4,Zennir Khaled15

Affiliation:

1. Department of Mathematics, College of Sciences and Arts, Qassim University, Ar-Rass, Saudi Arabia

2. Departement de Mathématiques, Faculté des sciences, Université 20 Aôut 1955, Skikda, Algérie

3. Department of mathematics, college of Education, Bahry University, Sudan

4. College of Arts, Imam Abdulrahman Bin Faisal University, Saudi Arabia

5. Laboratoire de Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945 Guelma, Guelma 24000, Algeria

Abstract

<abstract><p>Recent years have been marked by a significant increase in interest in solving nonlinear equations that arise in various fields of natural science. This trend is associated with the creation of a new method of mathematical physics. The present study is devoted to the analysis of the propagation of $ m $-nonlinear viscoelastic waves equations in an unbounded domain. The physical properties are determined by the equations of the linear theory of viscoelasticity. This article shows the main effect and interaction between the different weak and strong damping terms on the behavior of solutions. We found, under a novel condition on the kernel functions, an energy decay rate by using an appropriate energy estimates.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference24 articles.

1. A. B. Aliev, A. A. Kazimov, Global solvability and behavior of solutions of the Cauchy problem for a aystem of two semilinear hyperbolic equations with dissipation, Diff. Equ., 49 (2013), 457–467. https://doi.org/10.1134/S001226611304006X

2. A. B. Aliev, G. I. Yusifova, Nonexistence of global solutions of the Cauchy problem for the systems of three semilinear hyperbolic equations with positive initial energy, Transactions Issue Mathematics, Azerbaijan National Academy of Sciences, 37 (2017), 11–19.

3. A. B. Aliev, G. I. Yusifova, Nonexistence of global solutions of Cauchy problems for systems of semilinear hyperbolic equations with positive initial energy, Electron. J. Diff. Eq., 2017 (2017), 1–10.

4. B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 585021, https://doi.org/10.1155/2015/585021

5. M. A. Jorge Silva, T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130–1146. https://doi.org/10.1093/imamat/hxs011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3