Abstract
<abstract><p>In this paper, homothetical and translation lightlike graphs, which are generalizations of homothetical and translation lightlike hypersurfaces are investigated in the semi-Euclidean space $ \mathbb{R}_{q}^{n+2} $, respectively. We prove that all homothetical and all translation lightlike graphs are locally the hyperplanes. According to this fact, both of these graphs are minimal.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference16 articles.
1. K. Duggal, A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Dordrecht: Springer Science, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2
2. K. Duggal, A. Gimenez, Lightlike hypersurfaces of Lorentzian manifolds and with distinguished screen, J. Geom. Phys., 55 (2005), 107–122. http://dx.doi.org/10.1016/j.geomphys.2004.12.004
3. A. Bejancu, Null hypersurfaces of semi-Euclidean spaces, Saitama Mathematical Journal, 14 (1996), 25–40.
4. B. Acet, Lightlike hypersurfaces of metallic semi-Riemannian manifolds, Int. J. Geom. Methods M., 15 (2018), 1850201. http://dx.doi.org/10.1142/S0219887818502018
5. E. Kılıç, M. Gülbahar, E. Kavuk, Concurrent vector fields on lightlike hypersurfaces, Mathematics, 9 (2021), 59. http://dx.doi.org/10.3390/math9010059
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献