Author:
Nurwahyu Budi,Aris Naimah,Firman
Abstract
<abstract>
<p>In this paper, we introduce <italic>F</italic>-<italic>b</italic>-metric space (function weighted <italic>b</italic>-metric space) as a generalization of the <italic>F</italic>-metric space (the function weighted metric space). We also propose and prove some topological properties of the <italic>F</italic>-<italic>b</italic>-metric space, the theorems of fixed point and the common fixed point for the generalized expansive mappings, and an application on dynamic programing.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference19 articles.
1. I. A. Bakhtin, The contraction mapping principle in quasi- metric spaces, Funct. Anal., 30 (1989), 26–37.
2. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11.
3. R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. https://doi.org/10.22436/jnsa.008.06.11
4. R. George, A. Belhenniche, S. Benahmed, Z. D. Mitrović, N. Mlaiki, L. Guran, On an open question in controlled rectangular b-metric spaces, Mathematics, 8 (2020), 2239. https://doi.org/10.3390/math8122239
5. A. Belhenniche, L. Guran, S. Benahmed, F. L. Pereira, Solving nonlinear and dynamic programming equations on extended b-metric spaces with the fixed-point technique, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 24. https://doi.org/10.1186/s13663-022-00736-5
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献