Affiliation:
1. Department of Statistics, Cochin University of Science and Technology, Cochin 682 022, Kerala, India
2. Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan
3. Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
Abstract
<p>The unit new X-Lindley distribution, which is a novel one-parameter distribution on the unit interval, is presented in this study. It was developed by altering the new X-Lindley distribution using the exponential transformation. This new one-parameter distribution's fundamental features, including moments, incomplete moments, Lorenz and Bonferroni curves, Gini index, mode, extropy, Havrda and Charvat entropy, Rényi entropy, and Tsallis entropy, are explored. Additionally, it has bathtub-shaped hazard rate functions and monotonically increasing hazard rate functions with a single parameter. The new distribution is therefore sufficiently rich to model real data. Also, different estimation methods, such as maximum likelihood, least-squares, and weighted least-squares, are used to estimate the parameters of this model, and using a simulation research, their respective performances are evaluated. Finally, two real-life datasets are used to demonstrate the suggested model's competency.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference33 articles.
1. E. S. A. El-Sherpieny, M. A. Ahmed, On the Kumaraswamy Kumaraswamy distribution, Int. J. Basic Appl. Sci., 3 (2014), 372–381. https://doi.org/10.14419/ijbas.v3i4.3182
2. E. Altun, G. G. Hamedani, The log-xgamma distribution with inference and application, J. Soc. Fr. Stat., 159 (2018), 40–55.
3. J. Mazucheli, S. R. Bapat, A. F. B. Menezes, A new one-parameter unit-Lindley distribution, Chilean J. Stat., 11 (2020), 53–67.
4. J. Mazucheli, A. F. Menezes, S. Dey, Unit-Gompertz distribution with applications, Statistica, 79 (2019), 25–43. https://doi.org/10.6092/issn.1973-2201/8497
5. J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. De Oliveira, M. E. Ghitany, The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates, J. Appl. Stat., 47 (2020), 954–974. https://doi.org/10.1080/02664763.2019.1657813