Cardinality bounds on subsets in the partition resolving set for complex convex polytope-like graph

Author:

Koam Ali N. A.1,Khalil Adnan2,Ahmad Ali3,Azeem Muhammad4

Affiliation:

1. Department of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia

2. Department of Computer Sciences, Al-Razi Institute Saeed Park, Lahore, Pakistan

3. Department of Information Technology and Security, College of Computer Science and Information Technology, Jazan University, Jazan, Saudi Arabia

4. Department of Mathematics, Riphah International University, Lahore, Pakistan

Abstract

<abstract><p>Let $ G = (V, E) $ be a simple, connected graph with vertex set $ V(G) $ and $ E(G) $ edge set of $ G $. For two vertices $ a $ and $ b $ in a graph $ G $, the distance $ d(a, b) $ from $ a $ to $ b $ is the length of shortest path $ a-b $ path in $ G $. A $ k $-ordered partition of vertices of $ G $ is represented as $ {R}{p} = \{{R}{p_1}, {R}{p_2}, \dots, {R}{p_k}\} $ and the representation $ r(a|{R}{p}) $ of a vertex $ a $ with respect to $ {R}{p} $ is the vector $ (d(a|{R}{p_1}), d(a|{R}{p_2}), \dots, d(a|{R}{p_k})) $. The partition is called a resolving partition of $ G $ if $ r(a|{R}{p}) \ne r(b|{R}{p}) $ for all distinct $ a, b\in V(G) $. The partition dimension of a graph, denoted by $ pd(G) $, is the cardinality of a minimum resolving partition of $ G $. Computing precise and constant values for the partition dimension poses a interesting problem; therefore, it is possible to compute an upper bound for the partition dimension within a general family of graphs. In this paper, we studied partition dimension of the some families of convex polytopes, specifically $ \mathbb{T}_n $, $ \mathbb{U}_n $, $ \mathbb{V}_n $, and $ \mathbb{A}_n $, and proved that these graphs have constant partition dimension.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference46 articles.

1. P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559.

2. P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22 (1988), 445–455.

3. F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195.

4. R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vis. Graph. Image Process., 25 (1984), 113–121. https://doi.org/10.1016/0734-189X(84)90051-3

5. G. Chartrand, P. Zhang, The theory and applications of resolvability in graphs, Congr. Numer., 160 (2003), 47–68.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3