Author:
Sun Guangren, ,Zhao Zhengjun
Abstract
<abstract><p>Let SL$ _n(\mathbb{Q}) $ be the set of matrices of order $ n $ over the rational numbers with determinant equal to 1. We study in this paper a subset $ \Lambda $ of SL$ _n(\mathbb{Q}) $, where a matrix $ B $ belongs to $ \Lambda $ if and only if the conjugate subgroup $ B\Gamma_q(n)B^{-1} $ of principal congruence subgroup $ \Gamma_q(n) $ of lever $ q $ is contained in modular group SL$ _n(\mathbb{Z}) $. The notion of least common denominator (LCD for convenience) of a rational matrix plays a key role in determining whether <italic>B</italic> belongs to $ \Lambda $. We show that LCD can be described by the prime decomposition of $ q $. Generally $ \Lambda $ is not a group, and not even a subsemigroup of SL$ _n(\mathbb{Q}) $. Nevertheless, for the case $ n = 2 $, we present two families of subgroups that are maximal in $ \Lambda $ in this paper.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference9 articles.
1. W. A. Adkins, S. H. Weintraub, Algebra: An approach via module theory, Springer-Verlag, New York, Grad. Texts in Math., 136, 1992. https://dx.doi.org/10.1007/978-1-4612-0923-2
2. C. Conway, S. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1979), 308–339. https://dx.doi.org/10.1112/blms/11.3.308
3. F. Diamond, J. Shurman, A first course in modular forms, Springer-Verlag, New York, Grad. Texts in Math., 228, 2005. https://dx.doi.org/10.1007/978-0-387-27226-9
4. J. E. Humphreys, Arithmetic groups, Springer-Verlag, Berlin, Lecture Notes in Mathematics.789, 1980. https://dx.doi.org/10.1007/BFb0094567
5. J. Lehner, M. Newman, Weierstrass points on $\Gamma_0(N)$, Ann. Math., 79 (1964), 360–368. https://dx.doi.org/10.2307/1970550