Features gradient-based signals selection algorithm of linear complexity for convolutional neural networks

Author:

Omae Yuto1,Sakai Yusuke2,Takahashi Hirotaka2

Affiliation:

1. College of Industrial Technology, Nihon University, 1-2-1, Izumi, Narashino, Chiba 275-8575, Japan

2. Research Center for Space Science, Advanced Research Laboratories and Department of Design and Data Science, Tokyo City University, Kanagawa 224-8551, Japan

Abstract

<abstract><p>Recently, convolutional neural networks (CNNs) for classification by time domain data of multi-signals have been developed. Although some signals are important for correct classification, others are not. The calculation, memory, and data collection costs increase when data that include unimportant signals for classification are taken as the CNN input layer. Therefore, identifying and eliminating non-important signals from the input layer are important. In this study, we proposed a features gradient-based signals selection algorithm (FG-SSA), which can be used for finding and removing non-important signals for classification by utilizing features gradient obtained by the process of gradient-weighted class activation mapping (grad-CAM). When we defined $ n_ \mathrm{s} $ as the number of signals, the computational complexity of FG-SSA is the linear time $ \mathcal{O}(n_ \mathrm{s}) $ (i.e., it has a low calculation cost). We verified the effectiveness of the algorithm using the OPPORTUNITY dataset, which is an open dataset comprising of acceleration signals of human activities. In addition, we checked the average of 6.55 signals from a total of 15 signals (five triaxial sensors) that were removed by FG-SSA while maintaining high generalization scores of classification. Therefore, FG-SSA can find and remove signals that are not important for CNN-based classification. In the process of FG-SSA, the degree of influence of each signal on each class estimation is quantified. Therefore, it is possible to visually determine which signal is effective and which is not for class estimation. FG-SSA is a white-box signal selection algorithm because it can understand why the signal was selected. The existing method, Bayesian optimization, was also able to find superior signal sets, but the computational cost was approximately three times greater than that of FG-SSA. We consider FG-SSA to be a low-computational-cost algorithm.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3