Affiliation:
1. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
2. School of Mathematics, Xuzhou Vocational Technology Academy of Finance and Economics, Xuzhou 221116, China
Abstract
<abstract><p>In this paper, we investigate the existence of standing wave solutions to the following perturbed fractional <italic>p</italic>-Laplacian systems with critical nonlinearity</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{aligned} &\varepsilon^{ps}(-\Delta)^{s}_{p}u + V(x)|u|^{p-2}u = K(x)|u|^{p^{*}_{s}-2}u + F_{u}(x, u, v), \; x\in \mathbb{R}^{N}, \\ &\varepsilon^{ps}(-\Delta)^{s}_{p}v + V(x)|v|^{p-2}v = K(x)|v|^{p^{*}_{s}-2}v + F_{v}(x, u, v), \; x\in \mathbb{R}^{N}. \end{aligned} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>Under some proper conditions, we obtain the existence of standing wave solutions $ (u_{\varepsilon}, v_{\varepsilon}) $ which tend to the trivial solutions as $ \varepsilon\rightarrow 0 $. Moreover, we get $ m $ pairs of solutions for the above system under some extra assumptions. Our results improve and supplement some existing relevant results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)