Normalized solutions for Kirchhoff-Carrier type equation

Author:

Yang Jie1,Chen Haibo2

Affiliation:

1. School of Mathematics and Computational Science, Huaihua University, Huaihua, Hunan 418008, China

2. School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, China

Abstract

<abstract><p>In this paper, we study the following Kirchhoff-Carrier type equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\left(a+bM\left(|\nabla u|_{2}, |u|_{\tau}\right)\right)\Delta u-\lambda u = |u|^{p-2}u, \quad \ {\rm in}\ \mathbb{R}^{3}, $\end{document} </tex-math></disp-formula></p> <p>where $ a, \ b &gt; 0 $ are constants, $ \lambda\in \mathbb{R}, \ p\in (2, 6) $. By using a minimax procedure, we obtain infinitely solutions $ (v^{b}_{n}, \lambda_{n}) $ with $ v^{b}_{n} $ having a prescribed $ L^{2} $-norm. Moreover, we give a convergence property of $ v_{n}^{b} $ as $ b\rightarrow 0^{+} $.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference22 articles.

1. C. O. Alves, D. P. Covei, Existence of solution for a class of nonlocall elliptic problem via sub-supersolution method, Nonlinear Anal.-Real, 23 (2015), 1–8. https://doi.org/10.1016/j.nonrwa.2014.11.003

2. H. Berestycki, P. L. Lions, Nonlinear scalar field equations, II existence of infinitely many solutions, Arch. Ration. Mech. An., 82 (1983), 347–375. Available from: https://link.springer.com/article/10.1007/BF00250556.

3. T. Bartsch, S. De Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math., 100 (2013), 75–83. Available from: https://arXiv.org/abs/1209.0950v1.

4. G. Che, H. Chen, Existence and concentration result for Kirchhoff equations with critical exponent and hartree nonlinearity, J. Appl. Anal. Comput., 10 (2020), 2121–2144. https://doi.org/10.11948/20190338

5. G. Che, H. Chen, Existence and multiplicity of systems of Kirchhoff-type equations with general potentials, Math. Method. Appl. Sci., 40 (2019), 775–785. https://doi.org/10.1002/mma.4007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3