Affiliation:
1. American University in Dubai (AUD), Dubai, UAE
2. Faculty of Science I, Mathematics Department, Lebanese University, Hadath, Lebanon
Abstract
<abstract><p>We consider semilinear elliptic equations of the form $ \Delta u + f(|x|, u) = 0 $ on $ {\mathbb{R}}^{N} $ with $ f(|x|, u) = q(|x|)g(u) $. These type of equations arise in various problems in applied mathematics, and particularly in the study of population dynamics, solitary waves, diffusion processes, and phase transitions. We show that under suitable assumptions on the nonlinearity $ f $, there exists an oscillating radial solution converging to a zero of the function $ g $. We also study the oscillating and limiting behavior of this solution.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference12 articles.
1. H. Berestycki, P. Lions, Existence d'ondes solitaires dans des problèmes non-linéaires du type Klein-Gordon, C. R. Acad. Sci. A, 288 (1979), 395–398.
2. H. Berestycki, P. Lions, Existence of a ground state in nonlinear equations of the Klein-Gordon type, Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978), 1980, 35–51.
3. M. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Anal., 9 (1972), 249–261. http://dx.doi.org/10.1016/0022-1236(72)90001-8
4. A. Boscaggin, F. Colasuonno, B. Noris, Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions, ESAIM: COCV, 24 (2018), 1625–1644. http://dx.doi.org/10.1051/cocv/2017074
5. C. Coffman, Uniqueness of the ground state solution for $\Delta u - u + u^{3} = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81–95. http://dx.doi.org/10.1007/BF00250684