Study of modified prism networks via fractional metric dimension

Author:

Alamer Ahmed1,Zafar Hassan2,Javaid Muhammad2

Affiliation:

1. Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia

2. Department of Mathematics, School of Science, University of Management and Technology, Lahore, Pakistan

Abstract

<abstract><p>For a connected network $ \Gamma $, the distance between any two vertices is the length of the shortest path between them. A vertex $ c $ in a connected network is said to resolve an edge $ e $ if the distances of $ c $ from its endpoints are unequal. The collection of all the vertices which resolve an edge is called the local resolving neighborhood set of this edge. A local resolving function is a real-valued function is defend as $ \eta : V(\Gamma) \rightarrow [0, 1] $ such that $ \eta (R_{x}(e)) \geq 1 $ for each edge $ e \in E(\Gamma) $, where $ R_{x} (e) $ represents the local resolving neighborhood set of a connected network. Thus the local fractional metric dimension is defined as $ dim_{LF}(\Gamma) = \quad min \quad \{ |\eta|: \quad \eta \quad is \quad the \quad minimal \quad local \quad resolving \quad function \quad of \quad \Gamma\}, $ where $ |\eta| = \sum \limits _ {a \in R_{x}(e)}\eta(a) $. In this manuscript, we have established sharp bounds of the local fractional metric dimension of different types of modified prism networks and it is also proved that local fractional metric dimension remains bounded when the order of these networks approaches to infinity.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference30 articles.

1. P. J. Slater, Leaves of trees, Congr. Numerantium, 14 (1975), 549–559.

2. F. Harary, R. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195.

3. S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discret. Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2

4. B. Shanmukha, B. Sooryanarayana, K. S. Harinath, Metric Dimension of wheels, Far East J. Appl. Math., 8 (2002), 217–229.

5. G. Chartrand, L. Eroh, M. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discret. Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3