On the packing number of $ 3 $-token graph of the path graph $ P_n $

Author:

Ndjatchi Christophe1,Fernández Joel Alejandro Escareño2,Ríos-Castro L. M.3,Ibarra-Pérez Teodoro4,Correa-Aguado Hans Christian4,Martínez Hugo Pineda5

Affiliation:

1. Academia de Físico-Matemáticas, Instituto Politécnico Nacional, UPIIZ, P. C. 098160, Zacatecas, México

2. Ingeniería Mecatrónica, Becario BEIFI-IPN, Instituto Politécnico Nacional, UPIIZ, P. C. 098160, Zacatecas, México

3. Academia de Físico-Matemáticas, Instituto Politécnico Nacional, CECYT18, Zacatecas, P. C. 098160, Zacatecas, México

4. Academia de Ingeniería, Instituto Politécnico Nacional, UPIIZ, P. C. 098160, Zacatecas, México

5. Unidad Académica de Ingenieria Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, México

Abstract

<abstract><p>In 2018, J. M. Gómez et al. showed that the problem of finding the packing number $ \rho(F_2(P_n)) $ of the 2-token graph $ F_2(P_n) $ of the path $ P_n $ of length $ n\ge 2 $ is equivalent to determining the maximum size of a binary code $ S' $ of constant weight $ w = 2 $ that can correct a single adjacent transposition. By determining the exact value of $ \rho(F_2(P_n)) $, they proved a conjecture of Rob Pratt. In this paper, we study a related problem, which consists of determining the packing number $ \rho(F_3(P_n)) $ of the graph $ F_3(P_n) $. This problem corresponds to the Sloane's problem of finding the maximum size of $ S' $ of constant weight $ w = 3 $ that can correct a single adjacent transposition. Since the maximum packing set problem is computationally equivalent to the maximum independent set problem, which is an NP-hard problem, then no polynomial time algorithms are expected to be found. Nevertheless, we compute the exact value of $ \rho(F_3(P_n)) $ for $ n\leq 12 $, and we also present some algorithms that produce a lower bound for $ \rho(F_3(P_n)) $ with $ 13\leq n\leq 44 $. Finally, we establish an upper bound for $ \rho(F_3(P_n)) $ with $ n\geq 13 $.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference20 articles.

1. A. Alzaga, I. Rodrigo, R. Pignol, Spectra of symmetric powers of graphs and the Weisfeiler-Lehman refinements, J. Comb. Theory B, 100 (2010), 671–682. https://doi.org/10.1016/j.jctb.2010.07.001

2. S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, P. Stetsyuk, Estimating the size of correcting codes using extremal graph problems, In: Optimization, New York: Springer, 2009,227–243. https://doi.org/10.1007/978-0-387-98096-6_12

3. W. Carballosa, R. Fabila-Monroy, J. Leaños, L. M. Rivera, Regularity and planarity of token graphs, Discuss. Math. Graph T., 37 (2017), 573–586. https://doi.org/10.7151/dmgt.1959

4. H. de Alba, W. Carballosa, J. Leaños, L. M. Rivera, Independence and matching numbers of some token graphs, Australas. J. Comb., 76 (2016), 387–403.

5. J. A. Escareño Fernández, C. Ndjatchi, L. M. Ríos-Castro, Algorithms-for-packing-number-of-3-token, 2024. Available from: https://github.com/TheAlexz/Algorithms-for-packing-number-of-3-token.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3