Abstract
<abstract><p>Prostate cancer is a serious disease that endangers men's health. The genetic mechanism and treatment of prostate cancer have attracted the attention of scientists. In this paper, we focus on the nonlinear mixed reaction diffusion dynamics model of neuroendocrine transdifferentiation of prostate cancer cells with time delays, and reveal the evolutionary mechanism of cancer cells mathematically. By applying operator semigroup theory and the comparison principle of parabolic equation, we study the global existence, uniqueness and boundedness of the positive solution for the model. Additionally, the global invariant set and compact attractor of the positive solution are obtained by Kuratowski's measure of noncompactness. Finally, we use the Pdepe toolbox of MATLAB to carry out numerical calculations and simulations on an example to check the correctness and effectiveness of our main results. Our results show that the delay has no effect on the existence, uniqueness, boundedness and invariant set of the solution, but will affect the attractor.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference42 articles.
1. J. Horoszewicz, S. Leong, T. Ming-Chu, Z. L. Wajsman, M. Friedman, L. Papsidero, et al., The LNCaP cell line-A new model for studies on human prostatic carcinoma, Prog. Clin. Biol. Res., 37 (1980), 115–132.
2. K. Swanson, L. True, D. Lin, K. R. Buhler, R. Vessella, J. D. Murray, A quantitative model for the dynamics of serum prostate-specific antigen as a marker for cancerous growth: an explanation for a medic anomaly, Am. J. Pathol., 163 (2001), 2513–2522. https://doi.org/10.1016/S0002-9440(10)64691-3
3. R. T. Vollmer, S. Egaqa, S. Kuwao, S. Baba, The dynamics of prostate antigen during watchful waiting of prostate carcinoma: a study of 94 japanese men, Cancer, 94 (2002), 1692–1698. https://doi.org/10.1002/cncr.10443
4. R. Vollmer, P. Humphrey, Tumor volume in prostate cancer and serum prostate-specific antigen: analysis from a kinetic viewpoint, Am. J. Pathol., 119 (2003), 80–89.
5. Y. Kuang, J. Nagy, J. Elser, Biological stoichiometry of tumor dynamics: mathematical models and analysis, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 221–240.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献