Author:
Abdelkader Mohamed,Aguech Rafik
Abstract
<abstract><p>We investigated the statistical properties of the Moran random walk $ (Y_n)_n $ in one dimension, focusing on short memory. Specifically, employing generating function techniques, we determined the cumulative distribution function and the mean of the height $ H_n $. Furthermore, we derived explicit expressions for the distribution, mean, and variance of $ Y_n $, along with its asymptotic distribution. Finally, we provided the distribution of the waiting time $ \tau_h $, which represents the number of steps required to reach a specified level $ h $, as the conclusion of our study.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference12 articles.
1. Y. Itoh, H. M. Mahmoud, Age statistics in the Moran population model, Stat. Probab. Lett., 74 (2005), 21–30. https://doi.org/10.1016/j.spl.2005.04.028.
2. Y. Itoh, H. M. Mahmoud, D. Takahashi, A stochastic model for solitons, Random Struct. Algor., 24 (2004), 51–64. https://doi.org/10.1002/rsa.10106
3. R. Aguech, A. Althagafi, C. Banderier, Height of walks with resets, the Moran model, and the discrete Gumbel distribution, Seminaire Lotharingien de Combinatoire, 87B (2024), 12.
4. M. Abdelkader, On the height of one-dimensional random walk, Mathematics, 11 (2023), 4513. https://doi.org/10.3390/math11214513
5. R. Aguech, M. Abdelkader, Two-dimensional Moran model: Final altitude and number of resets, Mathematics, 11 (2023), 3774. https://doi.org/10.3390/math11173774