Attractive solutions for Hilfer fractional neutral stochastic integro-differential equations with almost sectorial operators

Author:

Sivasankar Sivajiganesan1,Udhayakumar Ramalingam1,Elamin Abd Elmotaleb A.M.A.2,Samidurai R.3,Etemad Sina45,Awadalla Muath6

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

2. Department of Mathematics, College of Science and Humanity, Prince Sattam bin Abdulaziz University, Sulail, Al-Kharj 11942, Saudi Arabia

3. Department of Mathematics, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India

4. Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

5. Mathematics in Applied Sciences and Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah 64001, Iraq

6. Department of Mathematics and Statistics, College of Science, King Faisal University, Hafuf, Al Ahsa 31982, Saudi Arabia

Abstract

<abstract><p>This paper studies the integro-differential equations of Hilfer fractional (HF) neutral stochastic evolution on an infinite interval with almost sectorial operators and their attractive solutions. We use semigroup theory, stochastic analysis, compactness methods, and the measure of noncompactness (MNC) as the foundation for our methodologies. We establish the existence and attractivity theorems for mild solutions by considering the fact that the almost sectorial operator is both compact and noncompact. Example that highlight the key findings are also provided.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference46 articles.

1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Amsterdam: Elsevier, 2006.

2. K. Diethelm, The analysis of fractional differential equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2

3. Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069

4. I. Podulbny, Fractional differential equations, San Diego: Academic Press, 1999.

5. K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: Wiley, 1993.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3