Author:
Huang Jing,Wang Qian,Zhang Rui
Abstract
<abstract><p>Let $ N $ denote a sufficiently large real number. In this paper, we prove that for $ 1 < c < \frac{104349}{77419} $, $ c\neq\frac{4}{3} $, for almost all real numbers $ T\in(N, 2N] $ (in the sense of Lebesgue measure), the Diophantine inequality $ |p_1^c+p_2^c-T| < T^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2 $. In addition, it is proved that the Diophantine inequality $ |p_1^c+p_2^c+p_3^c+p_4^c-N| < N^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2, p_3, p_4 $. This result constitutes a refinement upon that of Li and Cai.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference19 articles.
1. R. Baker, A. Weingartner, A ternary Diophantine inequality over primes, Acta Arith., 162 (2014), 159–196. https://doi.org/10.4064/aa162-2-3
2. Y. C. Cai, On a Diophantine inequality involving prime numbers, (Chinese), Acta Mathematica Sinica: Chinese Series, 39 (1996), 733–742.
3. Y. C. Cai, A ternary Diophantine inequality involving primes, Int. J. Number Theory, 14 (2018), 2257–2268. https://doi.org/10.1142/S1793042118501361
4. X. D. Cao, W. G. Zhai, A Diophantine inequality with prime numbers, (Chinese), Acta Mathematica Sinica: Chinese Series, 45 (2002), 361–370. https://doi.org/10.12386/A2002sxxb0046
5. S. W. Graham, G. A. Kolesnik, Van der Corpue's method of exponential sums, London: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511661976