A new hybrid approach based on genetic algorithm and support vector machine methods for hyperparameter optimization in synthetic minority over-sampling technique (SMOTE)

Author:

Akın Pelin

Abstract

<abstract> <p>The crucial problem when applying classification algorithms is unequal classes. An imbalanced dataset problem means, particularly in a two-class dataset, that the group variable of one class is comparatively more dominant than the group variable of the other class. The issue stems from the fact that the majority class dominates the minority class. The synthetic minority over-sampling technique (SMOTE) has been developed to deal with the classification of imbalanced datasets. SMOTE algorithm increases the number of samples by interpolating between the clustered minority samples. The SMOTE algorithm has three critical parameters, "k", "perc.over", and "perc.under". "perc.over" and "perc.under" hyperparameters allow determining the minority and majority class ratios. The "k" parameter is the number of nearest neighbors used to create new minority class instances. Finding the best parameter value in the SMOTE algorithm is complicated. A hybridized version of genetic algorithm (GA) and support vector machine (SVM) approaches was suggested to address this issue for selecting SMOTE algorithm parameters. Three scenarios were created. Scenario 1 shows the evaluation of support vector machine SVM) results without using the SMOTE algorithm. Scenario 2 shows that the SVM was used after applying SMOTE algorithm without the GA algorithm. In the third scenario, the results were analyzed using the SVM algorithm after selecting the SMOTE algorithm's optimization method. This study used two imbalanced datasets, drug use and simulation data. After, the results were compared with model performance metrics. When the model performance metrics results are examined, the results of the third scenario reach the highest performance. As a result of this study, it has been shown that a genetic algorithm can optimize class ratios and k hyperparameters to improve the performance of the SMOTE algorithm.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3