Maximum likelihood DOA estimation based on improved invasive weed optimization algorithm and application of MEMS vector hydrophone array

Author:

Wang Peng,Huang Jiajun,He Weijia,Zhang Jingqi,Guo Fan

Abstract

<abstract><p>Direction of arrival (DOA) estimation based on Maximum Likelihood is a common method in array signal processing, with many practical applications, but the huge amount of calculation limits the practical application. To deal with such an Maximum Likelihood (ML) DOA estimation problem, firstly, the DOA estimation model with ML for acoustic vector sensor array is developed, where the optimization standard in various cases can be unified by converting the maximum of objective function to the minimum. Secondly, based on the Invasive Weed Optimization (IWO) method which is a novel biological evolutionary algorithm, a new Improved IWO (IIWO) algorithm for DOA estimation of the acoustic vector sensor array is proposed by using ML estimation. This algorithm simulates weed invasion process for DOA estimation by adjusting the non-linear harmonic exponent of IWO algorithm adaptively. The DOA estimation accuracy has been improved, and the computation of multidimensional nonlinear optimization for the ML method has been greatly reduced in the IIWO algorithm. Finally, compared with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE) method and Tuna Swarm Optimization(TSO) algorithm, numerical simulations show that the proposed algorithm has faster convergence rate, improved accuracy in terms of Root Mean Square Error (RMSE), lower computational complexity and more robust estimation performance for ML DOA estimation. The experiment with tracking the orientation of the motorboat by Microelectronic mechanical systems (MEMS) vector hydrophone array shows the superior performance of proposed IIWO algorithm in engineering application. Therefore, the proposed ML-DOA estimation with IIWO algorithm can take into account both resolution and computation. which can meet the requirements of real-time calculation and estimation accuracy in the actual environment.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3