Author:
Sun Yuqi,Wang Xiaoyu,Dong Jing,Lv Jiahong
Abstract
<p>In this paper, we established two results concerning non-surjective $ (\varepsilon, s) $-isometries of uniformly convex Banach spaces, which extended some known results of Dolinar and Jung.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference30 articles.
1. S. Mazur, S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, CR Acad. Sci. Paris, 194 (1932), 946–948.
2. T. Figiel, On non linear isometric embeddings of normed linear spaces, Bull. Acad. Polon. Sci. Math. Astro. Phys., 16 (1968), 185–188.
3. G. Godefroy, N. J. Kalton, Lipschitz-free Banach spaces, Stud. Math., 159 (2003), 121–141. http://dx.doi.org/10.4064/sm159-1-6
4. Y. Dutrieux, G. Lancien, Isometric embeddings of compact spaces into Banach spaces, J. Funct. Anal., 255 (2008), 494–501. http://dx.doi.org/10.1016/j.jfa.2008.04.002
5. L. X. Cheng, Y. Zhou, On perturbed metric-preserved mappings and their stability characterizations, J. Funct. Aanl., 266 (2014), 4995–5015. http://dx.doi.org/10.1016/j.jfa.2014.02.019