Abstract
<abstract><p>Let $ \{S_n\} $ be the Apéry-like sequence given by $ S_n = \sum_{k = 0}^n\binom nk\binom{2k}k\binom{2n-2k}{n-k} $. We show that for any odd prime $ p $, $ \sum_{n = 1}^{p-1}\frac {nS_n}{8^n}{\equiv} (1-(-1)^{\frac{p-1}2})p^2\ (\text{ mod}\ {p^3}) $. Let $ \{Q_n\} $ be the Apéry-like sequence given by $ Q_n = \sum_{k = 0}^n\binom nk(-8)^{n-k}\sum_{r = 0}^k\binom kr^3 $. We establish many congruences concerning $ Q_n $. For an odd prime $ p $, we also deduce congruences for $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k}\ (\text{ mod}\ {p^3}) $, $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k(k+1)^2}\ (\text{ mod}\ {p^2}) $ and $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k(2k-1)}\ (\text{ mod}\ p) $, and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference36 articles.
1. S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, In: Symbolic computation, number theory, special functions, physics and combinatorics, Dordrecht: Kluwer, 2001, 1–12. doi: 10.1007/978-1-4613-0257-5_1.
2. G. Almkvist, W. Zudilin, Differential equations, mirror maps and zeta values, In: Mirror symmetry, AMS/IP Studies in Advanced Mathematics, Vol. 38, International Press & American Mathematical Society, 2007,481–515.
3. B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, New York: Wiley, 1998.
4. F. Beukers, Another congruence for the Apéry numbers, J. Number Theory, 25 (1987), 201–210. doi: 10.1016/0022-314X(87)90025-4.
5. H. W. Gould, Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations, Morgantown: West Virginia University, 1972.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Supercongruences involving products of three binomial coefficients;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-06-13
2. On a Conjecture of J. Shallit About Apéry-Like Numbers;International Mathematics Research Notices;2022-03-14