Affiliation:
1. School of Mathematics and Statistics, Tianshui Normal University, Tianshui, Gansu 741001, China
2. School of Mathematics and Statistics, Hexi University, Zhangye, Gansu 734000, China
Abstract
<abstract><p>In this work, the global behavior of a discrete population model</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases} x_{n+1}& = \alpha x_n e^{-y_n}+\beta,\\ y_{n+1}& = \alpha x_n(1-e^{-y_n}), \end{cases}\quad n = 0,1,2,\dots, \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>is considered, where $ \alpha\in (0, 1) $, $ \beta\in (0, +\infty) $, and the initial value $ (x_{0}, y_0)\in [0, \infty)\times [0, \infty) $. To illustrate the dynamics behavior of this model, the boundedness, periodic character, local stability, bifurcation, and the global asymptotic stability of the solutions are investigated.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference25 articles.
1. J. R. Beddington, C. A. Free, J. H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature, 255 (1975), 58–60. http://dx.doi.org/10.1038/255058a0
2. E. Camouzis, G. Ladas, Dynamics of third-Order rational difference equations with open problems and conjectures, Boca Raton: Chapman & Hall/CRC, 2008.
3. E. A. Grove, G. M. Kent, R. Levins, G. Ladas, S. Valicenti, Global stability in some population models, Poznan: Gordon and Breach, 2000,149–176.
4. M. P. Hassell, R. M. May, Stability in insect host-parasite models, J. Anim. Ecol., 42 (1973), 693–726. http://dx.doi.org/10.2307/3133
5. M. P. Hassell, The dynamics of arthropod predator-prey systems, Princeton University Press, 1978.