Author:
Adjaï K. K. D.,Akande J.,Yehossou A. V. R.,Monsia M. D.
Abstract
<abstract><p>In the attractive research field of nonlinear differential equations, there are a few studies devoted to finding exact and explicit harmonic and isochronous periodic solutions and limit cycles. In this contribution, we present some classes of polynomial mixed Lienard-type differential equations that can generate many equations with exact solutions. These classes of equations constitute counterexamples of the classical existence theorems.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference12 articles.
1. D. W. Jordan, P. Smith, Nonlinear ordinary differential equations: An introduction for scientists and engineers, New York: Oxford University press, 2007.
2. R. E. Mickens, Oscillations in planar dynamic systems, Vol. 37, Series on Advances in Mathematics for Applied Sciences, World Scientific, 1996.
3. S. Saha, G. Gangopadhyay, D. S. Ray, Reduction of kinetic equations to Lienard-Levinson-Smith form: Counting limit cycles, Int. J. Appl. Comput. Math., 5 (2019), 2–11. https://doi.org/10.1007/s40819-019-0628-9
4. S. Saha, G. Gangopadhyay, Where the Lienard-Levinson-Smith (LLS) theorem cannot be applied for a generalised Lienard system, arXiv, 2021. https://doi.org/10.48550/arXiv.2104.06043
5. R. Benterki, J. Llibre, Centers and limit cycles of polynomial differential systems of degree 4 via averaging theory, J. Comput. Appl. Math., 313 (2016), 273–283. https://doi.org/10.1016/j.cam.2016.08.047
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献