Input-output scaling factors tuning of type-2 fuzzy PID controller using multi-objective optimization technique

Author:

Sabahi Kamran1,Zhang Chunwei2,Kausar Nasreen3,Mohammadzadeh Ardashir2,Pamucar Dragan4,Mosavi Amir H.5

Affiliation:

1. Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran

2. Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang 110870, China

3. Department of Mathematics, Faculty of Arts and Science, Yildiz Technical University, Esenler, 34210, Istanbul, Turkey

4. Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia

5. Obuda University, Budapest, Hungary

Abstract

<abstract><p>The PID controller is a popular controller that is widely used in various industrial applications. On the other hand, the control problems in microgrids (MGs) are so challenging, because of natural disturbances such as wind speed changes, load variation, and changes in other sources. This paper proposes an input-output scaling factor tuning of interval type-2 fuzzy (IT2F) PID controller using a multi-objective optimization technique. The suggested controller is applied to an MG frequency regulation problem. In the introduced controller the effect of variations of renewable energies (REs) and other disturbances are taken into account, and the robustness is investigated. In the multi-objective scheme, some factors such as least overshoot, and minimum settling/rising time are considered. The simulations show that by considering the suitable adjustment the desired regulation accuracy is achieved, such that the frequency trajectory shows the desired overshoot, and settling/rising time.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3