Elliptic cross sections in blood flow regulation

Author:

Brimacombe Chris1,Corless Robert M.2,Zamir Mair3

Affiliation:

1. University of Toronto, Toronto, Canada; chris.brimacombe@mail.utoronto.ca

2. Department of Computer Science, Western University and Cheriton School of Computer Science, University of Waterloo, London and Waterloo, Canada; rcorless@uwo.ca

3. Department of Mathematics and Department of Medical Biophysics, Western University, London, Canada

Abstract

<abstract><p>Arterial deformations arise in blood flow when surrounding tissue invades the space available for a blood vessel to maintain its circular cross section, the most immediate effects being a reduction in blood flow and redistribution of shear stress. Here we consider deformations from circular to elliptic cross sections. Solution of this problem in steady flow is fairly straightforward. The focus in the present paper is on pulsatile flow where the change from circular to elliptic cross sections is associated with a transition in the character of the equations governing the flow from Bessel to Mathieu equations. The main aim of our study is to examine the hemodynamic consequences of the change from circular to elliptic cross sections and on possible implications of this change in blood flow regulation. The study of this problem has been hampered in the past because of difficulties involved in the solution of the governing equations. In the present study we describe methods we have used to overcome some of these difficulties and present a comprehensive set of results based on these methods. In particular, vessel deformation is examined under two different conditions relevant to blood flow regulation: (i) keeping cross sectional area constant and (ii) keeping cross sectional circumference constant. The results provide an important context for the mechanism of neurovascular control of blood flow under the pathological conditions of vessel deformation. The difficulty which has characterized this problem is that it involves elements of mathematics which are well outside the scope of a clinical/physiological study, while it actually involves clinical/physiological elements which are well outside the scope of a mathematical study. We hope that the context which we provide in this paper helps resolve this difficulty.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3