Abstract
<abstract><p>In this paper, we will introduce a new algebraic system called the elliptic complex, and consider the distribution of zeros of the function $ L(s, \chi) $ in the corresponding complex plane. The key to this article is to discover the limiting case of the Generalized Riemann Hypothesis on elliptic complex fields and, taking a series of elliptic complex fields as variables, to study the ordinary properties of their distributions about the non-trivial zeros of $ L(s, \chi) $. It is on the basis of these considerations that we will draw the following conclusions. First, the zeros of the function $ L(s, \chi) $ on any two elliptic complex planes correspond one-to-one. Then, all non-trivial zeros of the $ L(s, \chi) $ function on each elliptic complex plane are distributed on the critical line $ \Re(s) = {1\over 2} $ due to the critical case of the Generalized Riemann Hypothesis. Ultimately we proved the Generalized Riemann Hypothesis.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference13 articles.
1. X. K. Zhang, Congruences mudulo $ 2^3 $ for class numbers of general quadratic fields $ Q(\sqrt{m}) $and $ Q(\sqrt{m}) $, J. Number Theory, 32 (1989), 332–338. https://doi.org/10.1016/0022-314X(89)90089-9
2. N. A. Lebedev, Geometric theory of functions of a complex variable, Washington: American Mathematical Society, 1969.
3. T. S. Fiske, Theory of functions of a complex variable, Science, 14 (1901), 59–65.
4. M. Morse, Topological methods in the theory of functions of a complex variable, Princeton: Princeton University Press, 1949.
5. C. Pan, C. Pan, Basics analytic number theory, Harbin: Harbin University of Technology Press, 2016.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献