Affiliation:
1. Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il 55425, Saudi Arabia
2. Laboratory of Analysis and Control of Differential Equations "ACED", Faculty MISM, Department of Mathematics, University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria
Abstract
<abstract><p>In the present manuscript, the BVP problem of a semipostone multipoint $ \Psi $-Caputo fractional pantograph problem is addressed.</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \mathcal{D}_{r}^{\nu;\psi}\varkappa(\varsigma)+\mathcal{F}(\varsigma , \varkappa(\varsigma), \varkappa(r+\lambda\varsigma)) = 0, \ \varsigma \mbox{ in }(r, \mathcal{\Im}), $\end{document} </tex-math></disp-formula></p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \varkappa(r) = \vartheta_{1}, \ \varkappa(\mathcal{\Im}) = \sum\limits_{i = 1}^{m-2} \zeta_{i}\varkappa(\mathfrak{\eta}_{i})+\vartheta_{2}, \ \vartheta_{i} \in\mathbb{R}, \ i\in\{1, 2\}, $\end{document} </tex-math></disp-formula></p>
<p>and $ \lambda $ in $ \left(0, \frac{\mathcal{\Im}\mathfrak{-}r}{\mathcal{\Im} }\right) $. The seriousness of this research is to prove the existence of the solution of this problem by using Schauder's fixed point theorem (SFPT). We have developed our results in our research compared to some recent research in this field. We end our work by listing an example to demonstrate the result reached.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference30 articles.
1. B. Ahmad, Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations, Appl. Math. Lett., 23 (2010), 390–394. http://dx.doi.org/10.1016/j.aml.2009.11.004
2. Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal.-Theor., 72 (2010), 916–924. http://dx.doi.org/10.1016/j.na.2009.07.033
3. Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. http://dx.doi.org/10.1016/j.jmaa.2005.02.052
4. R. Almeida, A. Malinowska, M. Teresa, T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. http://dx.doi.org/10.1002/mma.4617
5. A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Boston: Elsevier, 2006. http://dx.doi.org/10.1016/S0304-0208(06)80001-0