Solitary waves of the generalized Zakharov equations via integration algorithms

Author:

Alotaibi Hammad

Abstract

<abstract><p>In many applications, the investigation of traveling wave solutions is essential in obtaining an accurate description of the dynamical behavior of most physical phenomena. The exact solutions to nonlinear equations can provide more physical descriptions and insightful details for many problems of practical interest. This paper focuses on investigating the solitary wave solutions of the generalized Zakharov equations (GZEs) by using four integration algorithms, namely, the modified $ (g'/g^{2}) $-expansion method, the modified $ (g') $-expansion method, the generalized simple ($ w/g $)-expansion method, and the addendum to Kudryashov's method. The GZEs have been widely used to describe the propagation of Langmuir waves in the field of plasma physics. The efficiency and simplicity of these methods are evaluated based on their application to GZEs, which have yielded multiple new optical solitary wave solutions in the form of rational, trigonometric, and hyperbolic functions. By using a suitable wave transformation, the coupled nonlinear partial differential equations are converted into ordinary differential equations. The derived optical solutions are graphically depicted in $ 2 $D and $ 3 $D plots for some specific parameter values. The traveling wave solutions discovered in the current study constitute just one example of the desired solutions that may enable the exploration of the physical properties of many complex systems and could also contribute greatly to improving our understanding of many interesting natural phenomena that arise in different applications, including plasma physics, fluid mechanics, protein chemistry, wave propagation, and optical fibers.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference57 articles.

1. A. Wazwaz, Partial differential equations and solitary waves theorem, Berlin: Springer, 2009. https://doi.org/10.1007/978-3-642-00251-9

2. R. Grimshaw, The solitary wave in water of variable depth, J. Fluid Mech., 42 (1970), 639–656. https://doi.org/10.1017/S0022112070001520

3. D. Baleanu, A. Machado, A. Luo, Fractional dynamics and control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6

4. B. Boudjehem, D. Boudjehem, Parameter tuning of a fractional-order PI controller using the ITAE criteria, In: Fractional dynamics control, New York: Springer, 2012, 49–57. https://doi.org/10.1007/978-1-4614-0457-6_4

5. H. Alotaibi, Developing multiscale methodologies for computational fluid mechanics, Ph. D Thesis, University of Adelaide, 2017. https://doi.org/10.25909/5ba30242307d5

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3