Abstract
<abstract><p>In this paper, we consider the common Re-nonnegative definite (Re-nnd) and Re-positive definite (Re-pd) solutions to a pair of linear matrix equations $ A_1XA_1^\ast = C_1, \ A_2XA_2^\ast = C_2 $ and present some necessary and sufficient conditions for their solvability as well as the explicit expressions for the general common Re-nnd and Re-pd solutions when the consistent conditions are satisfied.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference23 articles.
1. L. Wu, The Re-positive definite solutions to the matrix inverse problem $AX = B$, Linear Algebra Appl., 174 (1992), 145–151. doi: 10.1016/0024-3795(92)90048-F.
2. L. Wu, B. Cain, The Re-nonnegative definite solutions to the matrix inverse problem $AX = B$, Linear Algebra Appl., 236 (1996), 137–146. doi: 10.1016/0024-3795(94)00142-1.
3. J. Groß, Explicit solutions to the matrix inverse problem $AX = B$, Linear Algebra Appl., 289 (1999), 131–134. doi: 10.1016/S0024-3795(97)10008-8.
4. Q. W. Wang, C. L. Yang, The Re-nonnegative definite solutions to the matrix equation $AXB = C$, Comment. Math. Univ. Ca., 39 (1998), 7–13.
5. D. S. Cvetković-Iliíc, Re-nnd solutions of the matrix equation $AXB = C$, J. Aust. Math. Soc., 84 (2008), 63–72. doi: doi:10.1017/S1446788708000207.