Optimal control analysis of Monkeypox disease with the impact of environmental transmission

Author:

Alshehri Ahmed1,Ullah Saif2

Affiliation:

1. Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

2. Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan

Abstract

<abstract><p>Monkeypox is an emerging zoonotic viral disease resembling that of smallpox, although it is clinically less severe. Following the COVID-19 outbreak, monkeypox is an additional global health concern. The present study aims to formulate a novel mathematical model to examine various epidemiological aspects and to suggest optimized control strategies for the ongoing outbreak. The environmental viral concentration plays an important role in disease incidence. Therefore, in this study, we consider the impact of the environmental viral concentration on disease dynamics and control. The model is first constructed with constant control measures.The basic mathematical properties including equilibria, stability, and reproduction number of the monkeypox model are presented. Furthermore, using the nonlinear least square method, we estimate the model parameters from the actual cases reported in the USA during a recent outbreak in 2022. Normalized sensitivity analysis is performed to develop the optimal control problem. Based on the sensitivity indices of the model parameters, the model is reformulated by introducing six control variables. Based on theoretical and simulation results, we conclude that considering all suggested control measures simultaneously is the effective and optimal strategy to curtail the infection. We believe that the outcomes of this study will be helpful in understanding the dynamics and prevention of upcoming monkeypox outbreaks.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3