Nondecreasing analytic radius for the a Kawahara-Korteweg-de-Vries equation

Author:

Boukarou Aissa1,Zennir Khaled23,Bouye Mohamed4,Moumen Abdelkader5

Affiliation:

1. Faculty of Mathematics, University of Science and Technology Houari Boumediene, Bab Ezzouar, Algeria; Email: boukarouaissa@gmail.com

2. Department of Mathematics, College of Science, Qassim University, Saudi Arabia; Email: k.zennir@qu.edu.sa

3. Department of Mathematics, Faculty of Science, University 20 Août 1955- Skikda, Algeria; Email: k.zennir@univ-skikda.dz

4. Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Email: mbmahmad@kku.edu.sa

5. Department of Mathematics, College of Science, University of Ha'il, Ha'il 55473, Saudi Arabia; Email: mo.abdelkader@uoh.edu.sa

Abstract

<p>By using linear, bilinear, and trilinear estimates in Bourgain-type spaces and analytic spaces, the local well-posedness of the Cauchy problem for the a Kawahara-Korteweg-de-Vries equation</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \partial_{t}u+\omega\partial_{x}^{5}u+\nu \partial_{x}^{3}u+\mu\partial_{x}u^{2}+\lambda\partial_{x}u^{3}+\mathfrak{d}(x)u = 0, $\end{document} </tex-math></disp-formula></p><p>was established for analytic initial data $ u_{0} $. Besides, based on the obtained local result, together with an analytic approximate conservation law, we prove that the global solutions exist. Furthermore, the analytic radius has a fixed positive lower bound uniformly for all time.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3