Significance of heat transfer for second-grade fuzzy hybrid nanofluid flow over a stretching/shrinking Riga wedge

Author:

Siddique Imran1,Khan Yasir2,Nadeem Muhammad1,Awrejcewicz Jan3,Bilal Muhammad4

Affiliation:

1. Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan

2. Department of Mathematics, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia

3. Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego St., 90924 Lodz, Poland

4. Department of Mathematics, The University of Chenab, Gujrat 50700, Pakistan

Abstract

<abstract> <p>This investigation presents the fuzzy nanoparticle volume fraction on heat transfer of second-grade hybrid $ {\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{ + Cu/EO}} $ nanofluid over a stretching/shrinking Riga wedge under the contribution of heat source, stagnation point, and nonlinear thermal radiation. Also, this inquiry includes flow simulations using modified Hartmann number, boundary wall slip and heat convective boundary condition. Engine oil is used as the host fluid and two distinct nanomaterials ($ {\text{Cu}} $ and $ {\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} $) are used as nanoparticles. The associated nonlinear governing PDEs are intended to be reduced into ODEs using suitable transformations. After that 'bvp4c, ' a MATLAB technique is used to compute the solution of said problem. For validation, the current findings are consistent with those previously published. The temperature of the hybrid nanofluid rises significantly more quickly than the temperature of the second-grade fluid, for larger values of the wedge angle parameter, the volume percentage of nanomaterials. For improvements to the wedge angle and Hartmann parameter, the skin friction factor improves. Also, for the comparison of nanofluids and hybrid nanofluids through membership function (MF), the nanoparticle volume fraction is taken as a triangular fuzzy number (TFN) in this work. Membership function and $ \sigma {\text{ - cut}} $ are controlled TFN which ranges from 0 to 1. According to the fuzzy analysis, the hybrid nanofluid gives a more heat transfer rate as compared to nanofluids. Heat transfer and boundary layer flow at wedges have recently received a lot of attention due to several metallurgical and engineering physical applications such as continuous casting, metal extrusion, wire drawing, plastic, hot rolling, crystal growing, fibreglass and paper manufacturing.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3