Author:
Ploymukda Arnon,Chansangiam Pattrawut
Abstract
<abstract><p>We extend the notion of classical metric geometric mean (MGM) for positive definite matrices of the same dimension to those of arbitrary dimensions, so that usual matrix products are replaced by semi-tensor products. When the weights are arbitrary real numbers, the weighted MGMs possess not only nice properties as in the classical case, but also affine change of parameters, exponential law, and cancellability. Moreover, when the weights belong to the unit interval, the weighted MGM has remarkable properties, namely, monotonicity and continuity from above. Then we apply a continuity argument to extend the weighted MGM to positive semidefinite matrices, here the weights belong to the unit interval. It turns out that this matrix mean posses rich algebraic, order, and analytic properties, such as, monotonicity, continuity from above, congruent invariance, permutation invariance, affine change of parameters, and exponential law. Furthermore, we investigate certain equations concerning weighted MGMs of positive definite matrices. It turns out that such equations are always uniquely solvable with explicit solutions. The notion of MGMs can be applied to solve certain symmetric word equations in two letters.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献