Author:
Falah Hassanein,Darania Parviz,Pishbin Saeed
Abstract
<abstract><p>First-kind Volterra integral equations have ill-posed nature in comparison to the second-kind of these equations such that a measure of ill-posedness can be described by $ \nu $-smoothing of the integral operator. A comprehensive study of the convergence and super-convergence properties of the piecewise polynomial collocation method for the second-kind Volterra integral equations (VIEs) with constant delay has been given in <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>. However, convergence analysis of the collocation method for first-kind delay VIEs appears to be a research problem. Here, we investigated the convergence of the collocation solution as a research problem for a first-kind VIE with constant delay. Three test problems have been fairly well-studied for the sake of verifying theoretical achievements in practice.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference20 articles.
1. H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543234
2. K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., 30 (1979), 257–261. https://doi.org/10.1016/0030-4018(79)90090-7
3. K. Ikeda, H. Daido, O. Akimoto, Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Phys. Rev. Lett., 45 (1980), 709. https://doi.org/10.1103/PhysRevLett.45.709
4. M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators, Phys. Rev. E., 79 (2009), 026208. https://doi.org/10.1103/PhysRevE.79.026208
5. L. Weicker, G. Friart, T. Erneux, Two distinct bifurcation routes for delayed optoelectronic oscillators, Phys. Rev. E., 96 (2017), 032206. https://doi.org/10.1103/PhysRevE.96.032206