Impact of pseudoplastic and dilatants behavior of Reiner-Philippoff nanofluid on peristaltic motion with heat and mass transfer analysis in a tapered channel

Author:

Tahir Muhammad1,Khan Yasir2,Ahmad Adeel1

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Islamabad 45000, Pakistan

2. Department of Mathematics, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia

Abstract

<abstract> <p>The main goal of this article is to investigate the effects of pseudoplastic, and dilatants behavior of non-Newtonian based nanofluid on peristaltic motion in an asymmetric tapered channel. Buongiorno's nanofluid model is considered for the study to investigate the heat and mass transfer analysis. The Reiner-Philippoff fluid model is considered to depict the non-Newtonian characteristics of the fluid. The Reiner Philippoff fluid model is the most challenging model among other non-Newtonian fluid models in such a way that shear stress and velocity gradient are non-linearly proportional to each other in this model. This model also represents the implicit relation between stress and deformation rate. The governing equations are based on the dispersion model for nanofluid which incorporates the effects of thermophoretic and Brownian diffusions. The governing equations are simplified in the account of the small Reynolds number and long wavelength assumptions. The solution of the equations is retrieved numerically by the help of built in ND-Solve function of MATHEMATICA software. The sound effects of Reiner-Philippoff based nanofluid on the behavior of velocity and temperature profiles of the fluid, streamlines, pressure gradient fields, and concentration of the nanoparticles are discussed thoroughly. The interesting behavior of Reiner-Philippoff fluid for two limiting shear stress cases when shear stress parameter is very small and very large, for which Reiner-Philippoff fluid behaves like a Newtonian fluid, is also verified. It is observed that fluid flow changes its properties from dilatants fluid to Newtonian and from Newtonian to pseudoplastic fluid by varying the Reiner-Philippoff fluid parameter. According to the findings, the temperature graphs rise against higher thermophoretic diffusion and Brownian motion parameters and falls with higher Prandtl number. Further, the impacts of all the significant parameters are investigated briefly by mathematically as well as graphically.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference45 articles.

1. G. B. Thurston, N. M. Henderson, M. Jeng, Effects of erythrocytapheresis transfusion on the viscoelasticity of sickle cell blood, Clin. Hemorheol. Microcirc., 30 (2004), 83–97.

2. H. A. Baieth, S. Hamza, Comparative examination of constitutive equations for apparent viscosity of human blood, Egypt. J. Biophys. Biomed. Eng., 7 (2006), 85–96.

3. G. Pedrzzetti, L. Zavatto, F. Domenichini, A. Tortoriello, Pulstile flow inside moderately elastic arteries, its modeling and effects of elasticity, Comput. Methods Biomec. Biomed. Eng., 5 (2002), 219–231. http://doi.org/10.1080/10255840212874

4. G. Pontrelli, Nonlinear problems in arterial flows, Nonlinear Anal., 47 (2001), 4905–4915. https://doi.org/10.1016/S0362-546X(01)00603-4

5. F. J. Walburn, D. J. Scnech, A constitutive equation for whole human blood, Biorheology, 13 (1976), 201–210. https://doi.org/10.3233/bir-1976-13307

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3