Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer data

Author:

Hussain Zawar1,Akbar Atif2,Almazah Mohammed M. A.3,Al-Rezami A. Y.4,Al-Duais Fuad S.4

Affiliation:

1. Govt Millat Graduate College Multan, Pakistan, 60800

2. Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan, 60800

3. Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil, 61421, Saudi Arabia

4. Mathematics Department, College of Humanities and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia

Abstract

<abstract> <p>In the framework of generalized linear models (GLM), this paper explores the design and applicability of partial residual (PRES), augmented partial residual (APRES), and conditional expectation and residuals (CERES) plots for visualizing an outlier's diagnostics as a function of selected variables. Here, a geometric regression as a GLM is thoroughly described. Additionally, plots for PRES, APRES, and CERES have been built. Due to how the response variable and the associated link function interact with various covariates, the effectiveness of these plots for creating an appealing visual impression may vary. On the cervical cancer data, specific methodologies are used to identify trends for effective modelling. When compared to other approaches, the power of the tests for various plots demonstrates that PRES, CERES (L) and CERES (K) have the greatest endurance for the outlier's diagnostics. On the basis of the power of residual plots, the use is recommended for outlier diagnostics in presence of conventional tests.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference31 articles.

1. P. McCullagh, J. A. Nelder, Generalized linear models, Chapman and Hall, 1989. Available from: https://www.utstat.toronto.edu/~brunner/oldclass/2201s11/readings/glmbook.pdf.

2. M. Otto, Chemometrics: statistics and computer application in analytical chemistry, John Wiley & Sons, 2016. Available from: https://www.wiley.com/en-us/exportProduct/pdf/9783527699384.

3. A. F. Lukman, K. Ayinde, S. Binuomote, O. A. Clement, Modified ridge‐type estimator to combat multicollinearity: Application to chemical data, J. Chemometr., 33 (2019), e3125. https://doi.org/10.1002/cem.3125

4. A. Zeileis, C. Kleiber, S. Jackman, Regression models for count data in R, J. Stat. Softw., 27 (2008), 1–25.

5. W. S. Cleveland, Graphs in scientific publications, Am. Stat., 38 (1984), 261–269. https://doi.org/10.1080/00031305.1984.10483223

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3