Analytical modeling of 2D groundwater flow in a semi-infinite heterogeneous domain with variable lateral sources

Author:

Hsieh Ping-Cheng,Yu Po-Wen,Wu Ming-Chang

Abstract

<abstract> <p>In nature, aquifers are usually composed of distinct kinds of media, i.e., heterogeneous domains rather than homogeneous domains. Groundwater level and flow changes in such domains are more complicated than those in homogeneous domains; thus, building a mathematical model for addressing groundwater flow in heterogeneous aquifers is the present research goal. In conventional research on similar topics, many one-dimensional (1D) analytical models have been presented, but it is challenging to simulate real-world scenarios. This study develops a two-dimensional (2D) analytical model for modeling groundwater flow in a conceptual sloping heterogeneous domain imposed by variable recharge. This model can consider distinct slope angles, medium heterogeneity, and any type of lateral recharge for a semi-infinite domain. The results indicate that groundwater level and flow discharge are greatly affected by the abovementioned factors. The recharge intensity significantly affects the peak of the groundwater level. For example, when the recharge rate increases by 30%, the peak water level increases by 50% as the groundwater flows from the sandy loam zone to the loam zone. The loops delineating the relationship between discharge and groundwater level for different bottom slopes cannot become close for heterogeneous aquifers. The presented 2D analytical model can simulate and better predict results of groundwater changes than previous 1D analytical models. Further, this model can simultaneously consider the effect of varying recharge over time and space on groundwater level change.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3