Author:
Liu Hailin,Lu Longzhi,Zhong Liping
Abstract
<p>This is one of a series of papers that aims to give an explicit upper bound on the proportion of elements of order a product of two primes in finite symmetric groups. This one presents such a bound for the elements as the product of two distinct odd primes.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference9 articles.
1. R. Beals, C. R. Leedham-Green, A. C. Niemeyer, C. E. Praeger, A. Seress, Permutations with restricted cycle structure and an algorithmic application, Comb. Probab. Comput., 11 (2002), 447–464. http://doi.org/10.1017/S0963548302005217
2. S. Chowla, I. N. Herstein, W. R. Scott, The solutions of $x^d = 1$ in symmetric groups, Norske Vid. Selsk. Forh. Trondheim, 25 (1952), 29–31.
3. S. P. Glasby, C. E. Praeger, W. R. Unger, Most permutations power to a cycle of small prime length, P. Edinburgh Math. Soc., 64 (2021), 234–246. https://doi.org/10.1017/S0013091521000110
4. E. Jacobsthal, Sur le nombre d'$\acute{e}$l$\acute{e}$ments du groupe sym$\acute{e}$trique ${\rm{S}}_n$ dont l'ordre est un nombre premier, Norske Vid. Selsk. Forh. Trondheim, 21 (1949), 49–51.
5. H. L. Liu, L. P. Zhong, On the proportion of elements of order $2p$ in finite symmetric groups, Hacet. J. Math. Stat., 2024. Available from: https://doi.org/10.15672/hujms.1367438