Orbital stability of periodic standing waves of the coupled Klein-Gordon-Zakharov equations

Author:

Li Qiuying1,Zheng Xiaoxiao2,Wang Zhenguo3

Affiliation:

1. School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, China

2. School of Mathematical Sciences, Qufu Normal University, Qufu 273155, China

3. Department of Mathematics, Taiyuan University, Taiyuan 030032, China

Abstract

<abstract><p>This paper investigates the orbital stability of periodic standing waves for the following coupled Klein-Gordon-Zakharov equations</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document} $ \begin{equation*} \left\{ \begin{aligned} &amp;u_{tt}-u_{xx}+u+\alpha uv+\beta|u|^{2}u = 0, \ &amp;v_{tt}-v_{xx} = (|u|^{2})_{xx}, \end{aligned} \right. \end{equation*} $ \end{document} </tex-math> </disp-formula></p> <p>where $\alpha&gt;0$ and $\beta$ are two real numbers and $\alpha&gt;\beta$. Under some suitable conditions, we show the existence of a smooth curve positive standing wave solutions of dnoidal type with a fixed fundamental period L for the above equations. Further, we obtain the stability of the dnoidal waves for the coupled Klein-Gordon-Zakharov equations by applying the abstract stability theory and combining the detailed spectral analysis given by using Lam\'{e} equation and Floquet theory. When period $L\rightarrow\infty$, dnoidal type will turn into sech-type in the sense of limit. In such case, we can obtain stability of sech-type standing waves. In particular, $\beta = 0$ is advisable, we still can show the the stability of the dnoidal type and sech-type standing waves for the classical Klein-Gordon-Zakharov equations.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3