Affiliation:
1. Department of Mathematics, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
2. Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Lavale, Pune, India
3. Department of Mathematics, College of Science, Taibah University, Madinah 42353, Saudi Arabia
Abstract
<p>On an infinite dimensional complex Hilbert space $ \mathcal{H} $, we consider a standard operator algebra $ \mathcal{S} $ with an identity operator $ I $ that is closed with respect to <italic>adjoint</italic> operation. $ P_{n}\left(\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}, \ldots, \mathcal{X}_{n}\right) $ is set of polynomials defined under indeterminates $ \mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_n $ by $ n $ with multiplicative Lie products with set of positive integers $ \mathbb{N}. $ It is shown that a map $ \Theta: \mathcal{S} \rightarrow \mathcal{S} $ satisfying</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \Theta\left(P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right)\right) = \sum\limits_{i = 1}^{n} P_{n}\left(\mathcal{D}_{1}, \ldots, \mathcal{D}_{i-1}, \Theta\left(\mathcal{D}_{i}\right), \mathcal{D}_{i+1}, \ldots, \mathcal{D}_{n}\right), \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p>for any $ \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n} \in \mathcal{S} $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\ldots \mathcal{D}_{n} = 0 $ can be represented as $ d(x)+\tau(x) $ for every $ x \in \mathcal{S} $, where $ d: \mathcal{S} \rightarrow \mathcal{S} $ is an additive derivation with another map $ \tau: \mathcal{S} \rightarrow \mathcal{Z}(\mathcal{S}) $ that vanishes on each $ (n-1)^{th} $ commutator $ P_{n}\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots, \mathcal{D}_{n}\right) $ with $ \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}\cdots \mathcal{D}_{n} = $ 0.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)