Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras

Author:

Almutiben Nouf12,Boone Edward L.3,Ghanam Ryad4,Thompson G.5

Affiliation:

1. Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, V. A. 23284, USA

2. Department of Mathematics, College of Sciences, Jouf University, Saudi Arabia; naalswilem@ju.edu.sa

3. Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, V. A. 23284, USA; elboone@vcu.edu

4. Department of Liberal Arts & Sciences, Virginia Commonwealth University in Qatar, Doha, P. O. Box 8095, Doha, Qatar; raghanam@vcu.edu

5. Department of Mathematics, University of Toledo, Toledo, OH 43606, USA; gerard.thompson@utoledo.edu

Abstract

<abstract><p>In this paper, we consider the symmetry algebra of the geodesic equations of the canonical connection on a Lie group. We mainly consider the solvable indecomposable six-dimensional Lie algebras with co-dimension two abelian nilradical that have an abelian complement. In dimension six, there are nineteen such algebras, namely, $ A_{6, 1} $–$ A_{6, 19} $ in Turkowski's list. For each algebra, we give the geodesic equations, a basis for the symmetry Lie algebra in terms of vector fields, and finally we identify the symmetry Lie algebra from standard lists.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference19 articles.

1. S. Lie, Classification und integration von gewöhnlichen differentialgleichungen zwischenxy, die eine gruppe von transformationen gestatten, Math. Ann., 32 (1888), 213–281. https://doi.org/10.1007/BF01444068

2. S. Lie, Vorlesungen über differentialgleichungen mit bekannten infinitesimalen transformationen, Leipzig, 1891.

3. P. J. Olver, Applications of Lie groups to differential equations, Springer Science & Business Media, 2000. https://doi.org/10.1007/978-1-4684-0274-2

4. G. W. Bluman, S. Kumei, Symmetries and differential equations, Springer Science & Business Media, 2013. http://doi.org/10.1007/978-1-4757-4307-4

5. D. J. Arrigo, Symmetry analysis of differential equations, John Wiley & Sons, 2015.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3