Affiliation:
1. Department of Mathematics, College of Science, University of Ha'il, Ha'il, Saudi Arabia
2. School of Software, South China Normal University, Foshan, China
Abstract
<abstract><p>This paper is concerned with a generalization of the atom-bond sum-connectivity (ABS) index, devised recently in [A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, <italic>J. Math. Chem.</italic>, <bold>60</bold> (2022), 2081-2093]. For a connected graph $ G $ with an order greater than $ 2 $, the general atom-bond sum-connectivity index is represented as $ ABS_\gamma(G) $ and is defined as the sum of the quantities $ (1-2(d_x+d_y)^{-1})^{\gamma} $ over all edges $ xy $ of the graph $ G $, where $ d_x $ and $ d_y $ represent the degrees of the vertices $ x $ and $ y $ of $ G $, respectively, and $ \gamma $ is any real number. For $ -10\le \gamma \le 10 $, the significance of $ ABS_\gamma $ is examined on the data set of octane isomers for predicting six selected physicochemical properties of the mentioned compounds; promising results are obtained when the approximated value of $ \gamma $ belongs to the set $ \{-3, 1, 3\} $. The effect of the addition of an edge between two non-adjacent vertices of a graph under $ ABS_\gamma $ is also investigated. Moreover, the graphs possessing the maximum value of $ ABS_{\gamma} $, with $ \gamma > 0 $, are characterized from the set of all connected graphs of a fixed order and a fixed (ⅰ) vertex connectivity not greater than a given number or (ⅱ) matching number.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference24 articles.
1. A. M. Albalahi, E. Milovanović, A. Ali, General atom-bond sum-connectivity index of graphs, Mathematics, 11 (2023), 1–15. https://doi.org/10.3390/math11112494
2. A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1
3. A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, Electron. J. Math., 5 (2023), 1–7. https://doi.org/10.47443/ejm.2022.039
4. T. A. Alraqad, I. Ž. Milovanović, H. Saber, A. Ali, J. P. Mazorodze, Minimum atom-bond sum-connectivity index of trees with a fixed order and/or number of pendent vertices, 2022, arXiv: 2211.05218.
5. J. A. Bondy, U. S. R. Murty, Graph theory, Springer, 2008.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献